Recent Documents

The Forgotten Park ( 5 Part Series)

  1. Sandy Lake: The way it was meant to be
  2. Why we have to protect all around Sandy Lake
  3. Existing threats to the water quality of Sandy Lake
  4. Diversity of forests/Old growth within proposed Sandy Lake Regional Park
  5. Where to go from here/What you can do

1. Sandy Lake: The way it was meant to be. June 16, 2019

There is a beautiful natural park sitting between the Hammonds Plains Road and Sackville River. The Sandy Lake – Sackville River Regional Park is a proposed 2000 acre park with 1000 of those acres currently protected as park. We are seeking protection for all currently undeveloped land in the Sandy Lake watershed plus additional lands to protect this outstanding natural area for all time.

Within the current 1000 acres is the Sandy Lake Lions Park that we know today is a real “hidden gem”.   It is rarely mentioned on City maps and is hard to find, as there is no signage leading to the park until you get on Smith’s Road. Some maps call it Jack Lake Regional Park and some call it Sandy Lake Park. No matter the name, it is a place that needs our help.

To those who know about Sandy Lake Lions Park, they know it as an uncrowded swimming spot that has life guards on duty during July and August.  Some walk their dogs along the power grid trails, and sometimes follow one of the trails winding through the woods.  Others go mountain biking right next to the Rifle Range, where various bumps and jumps have been built by bikers going back to the 1980’s. Bird watching, fishing, ice sports, cross-country skiing, and canoeing are also popular Sandy Lake activities.

All these activities have been going on for a long time.  All the different users of the trail should know that their little secret gem right here in Bedford is threatened by development. The West side of Sandy Lake Park is slated for development (circled in brown).

Many have already probably noticed the clear-cut that was done recently in the past few years.  This is the beginning of a potentially huge development, an extension of the current Kingswood subdivision. At the same time, the Jack Lake Wilderness Park, adjoined to Sandy Lake Lions Park is receiving very little protection, and has not been officially designated.  You can’t even find it on a map.  (Try.  There is no map showing the limits of Jack Lake Park.) While development has been a tremendous economic boom in Bedford over the past 10 years, the area around Sandy Lake was singled out for protection going back fifty years…

You may hear talk that it is already being protected (areas in pink).  To a certain extent, this is true but strictly as a theoretical park.  There is almost no signage, park limits or enforcement of any rules to protect the nature and wilderness.  The land that is owned by HRM is fragmented and not actually marked as such in any practical way.  What is marked in yellow is being proposed by the Sandy Lake Conservation Association, as well as the Sandy Lake – Sackville River Regional Coalition as a bigger, better and unified park.  This park would help protect the natural history of the area, create an effective protected wilderness area for both citizens of HRM and (perhaps most importantly) wildlife.  It would also finally meet goal of the park suggested in the 1970’s and provide a key link to the recent, HRM City Council approved, Green Network Plan.

In the early 1970’s, Halifax City published a report advocating for the protection of seven “priority areas” to be preserved for their recreational potential, ecological richness and community educational value.  The Sandy Lake Regional Park was considered one of the jewels in the crown.  The city was ambitious outlining the park as being “…between the Sackville River and Hammonds Plains Rd., and from the Bedford Rifle Range west towards the Lucasville Road (including buffers and flood plains)”.

The new proposal that has been made (combination of yellow and pink colours on our map, would make a park:

  • that is connected and united within a common boundary
  • protects Sandy, Jack and Marsh Lakes and the Sackville River
  • Follows the guidelines proposed by The Green Network Plan – Sandy Lake would provide an essential wildlife corridor onto the Chebucto Peninsula.

Give access to an urban wilderness multi-use park within the HRM.


2. Sandy Lake: The way it was meant to be. July 29, 2019

With the existence of the current Sandy Lake Lion’s Park and Jack Lake Park, it may seem as though the lake is being effectively protected.  One of the main concerns with the current size of Sandy Lake Lions Park is that it is very small, protecting only one small section of one side of the lake.  The most striking example of this can be seen when looking at the West shore of the lake – one can’t help but notice the clear-cut that happened a number of years ago.

This clear-cut was done by a property developer in 2013 with the eventual goal of building a suburb next to Sandy Lake.

That suburb is scheduled to add homes for 16,000 people and would add up to 8,000 more cars to the Hammonds Plains Road.

This map shows Big Sandy Lake at the centre of the picture.  All the rivers and streams running into Sandy Lake are marked in light blue.  The lake and all the water sources that feed into it are part of the watershed for the Sackville River.  This means that anything polluting the water sources of Sandy Lake will also, eventually, pollute the Sackville River.

The clear-cut is easy to see as the brownish section to the left of Sandy Lake.  It is easy to see how almost all the water sources of Sandy Lake run through the clear- cut.  With all the trees cut in 2013 the soil retention in that area is much weaker than when the trees were there.  Without soil retention, all the sediment will eventually wash into Sandy Lake, suffocating fish, plant and other aquatic plant life.  Some may say that having been cut, the damage has been done and we can allow the development to go ahead.  There is however, still a chance to remediate the damage already done as well as prevent any further damage – increasing the boundaries of the current Sandy Lake Lions Park to protect the land surrounding the lake.  In fact, the clear-cut is already regenerating a full suite of Acadian forest and it is already starting to protect the lakes again.

The proposed enlargement of Sandy Lake Park would also help to maintain a vital wildlife corridor onto the Chebucto Peninsula.  The Recent Green Network Plan has specifically pointed out the vital importance of the undeveloped lands around and including the current Sandy Lake Park.  The yellow lines show wildlife corridors that are currently threatened by development but need to be protected.  One can see that 3 of the 4 suggested corridors pass through lands surrounding Sandy Lake.  Increasing the size of the current Sandy Lake Lions Park is the only way to ensure that these corridors are protected.


The next series in the Forgotten Park will be coming soon.


Why Expand Sandy Lake-Sackville River Regional Park by 1000 acres? January 17, 2019

The Sandy Lake-Sackville River Regional Park is currently one thousand acres. It has been recognized for nearly five decades, provincially and municipally and in multiple reports and studies, to be a special landscape worth protecting, but the final 1000 acres have never been saved.

In 1971, P.B. Dean was hired to identify areas that are “Unique in the Halifax Dartmouth area or important on a regional or provincial scale.” The Sandy Lake to Sackville River area was selected as one of seven unique “jewels in the crown” – priority areas to be protected for their ecological richness and for community education and recreation. In 2006, HRM created Sandy/Jack Lake Regional Park as only 1000 acres, leaving over 1000 acres in private ownership and not protected. Time is Running Out. Housing development has been on a parallel path and development is about to start. The community and the public are working to save this irreplaceable natural area.
Why expand the park by the further 1000 acres?

The area is unique. Sandy and Marsh lakes are bordered by rich drumlins that support magnificent mixed, multi-aged Acadian forest with significant old-growth stands, some trees over 200 years old, and striking “pit and mound” topography. This is one of the few remaining large Acadian forest stands near Halifax. The 3 lakes and the river are unique – one a big marsh, one a deep “blue lake” (Most in this part of NS are “brown lakes”) and the third a boreal forest lake. A wide variety of significant natural elements exist all in one place. The 1000 acres which are waiting to be protected by park acquisition, the forests and waterways west and north of Sandy Lake, were part of the original park “gem”. They are species-rich, including rare species and important turtle and moose habitat. They are all that is left of this essential sub-watershed of the Sackville River. Their ecological value remains intact today and must be protected.

Watershed protection: This watershed is slated for housing development. Instead, we must protect west of the lakes where most of the surface water enters the system. There is already dirty water entering there. Damaging organics and salts need to be reversed rather than added to. To understand why in more detail, refer to the observations at>Lakes>EC&pH, hear the presentation at, and see the attached, Map 1.

The Halifax Green Network Plan (HGNP) identifies the Sandy Lake area as having at least 3 important wildlife corridors, some of the few “pinch points” remaining for connecting Chebucto Peninsula lands to the central and eastern mainland in particular, and protecting the biodiversity of the Chebucto Peninsula – a priority of the HGNP. The area is also identified in the HGNP as an important sub-watershed of the Sackville River System, which is one of the main natural corridors in the HGNP. See attached, Map 2.

Outdoor Recreation: “The objectives for Regional Parks are to preserve significant natural or cultural resources, and to be large enough to support both ecosystem protection and human enjoyment at the same time.” The area proposed for Sandy Lake Regional Park is already used unofficially by citizens of HRM for multi-recreational purposes through a network of existing trails, including mountain biking, birdwatching, swimming, paddling, fishing, dog-walking, cross-country skiing and snowshoeing, to name a few. Map 3, attached, shows the integration between Conservation and Recreation. The west side is conservation primarily. The east side is conservation and recreation.

The Sandy Lake to Sackville River area is a popular location for research for schools, universities and community. Since the 1970s, aquatic studies point to deterioration in oxygenation and increased salt loading of Sandy Lake related to urbanization and some clearcutting. Significant further settlement within the Sandy Lake watershed would make the lake inhospitable to the migratory fish, reduce wildlife diversity, as well as increase flooding downstream in the Sackville River flood plain.

What of the disturbed land to the immediate west of Sandy Lake? It is already an Acadian Forest – a young example. Vigorous regeneration covers most of the clear cut with the full suite of Acadian forest species that is already functioning to protect the lakes and rivers as the trees regrow and the ecological system re-establishes itself. It is a living example of how Acadian forests recreate themselves. Park planners can make educational use of this evolution. The three main tributaries flow across this land, making it critical to the health of the existing rich and diverse watershed. By letting the 200 acres heal, they will heal the watershed so it can once again help maintain water quality in the lake for wild Atlantic Salmon, other fishes, wildlife, and will benefit the watershed all the way to the Bedford Basin.

For the maps mentioned, go to: WHY 1000acres more 2019Jan17


On Earth Day 2018, Sunday April 22nd, the Sandy Lake Regional Park Coalition was launched with a forest walk led by Bob Guscott

Bob led an enthusiastic group of about 40 on a forest walk at Sandy Lake. Organised by the Sandy Lake Conservation Association,, this event had three purposes: to celebrate Earth Day; to recognise the city’s work to create a Green Network; and to launch the Sandy Lake Regional Park Coalition.

Bob is a keen naturalist and forest ecologist retired from the Nova Scotia Department of Natural Resources after 30 years as a Chief Technician and Forest Health Specialist. He taught participants about the pit and mound topography that is unique to old growth Acadian forests; the significance of the select-cut tree stumps that are 60-80 years old; and why dead trees in wooded areas are not a ‘mess’ to be removed, but are best left as natural habitat for woodland creatures and, just as important, as natural fertilizer for the next generation of trees. Also, just as importantly as well, these dead trees pose no real fire risk. Old growth forests like this are becoming rare in Nova Scotia and desperately need bylaw protection as is done in Slovakia.

Acadian Forest’s Love Affair

We also learned about the recent awareness of the invisible plant connectivity, and life, taking place underground which people cannot see. (Scientists have injected isotopes into a tree and a year later they were found in another tree on the other side of its forested area.) Also, small trees are actually fed by big ones!
Miraculously, a Barred Owl flew over us at one point, and we spent a few minutes just ‘forest-bathing’ – stopping for a while to quietly listen to the sounds around us. One woman commented that she would never look at the woods in the same way again.

Forest “Bathing”

Holding spotted salamander eggs

Bob expressed that forests like this should be available to every child.

City Councillors Steve Craig, Tim Outhit, and Matt Whitman and family members took part, along with community members and representatives from several of the newly formed coalition’s groups. Jenny Lugar of Our HRM Alliance highlighted the eagerness with which we await the city’s Green Network Plan. Clarence Stevens of the Halifax Field Naturalists and the Turtle Patrol added to the day by providing interesting information on birds and reptiles, and he inspired a spring trash pick-up activity during the walk.

The Sandy Lake Conservation Association and Sackville Rivers Association are coordinating efforts to protect the watershed and ecosystems of Sandy Lake, Marsh Lake, Jack Lake, and the Sackville River, in the form of a regional park. We thank Bob Guscott for this truly unforgettable forest walk. Thank you also to the Bedford Lions Club for the beautiful natural beach at Sandy Lake, and to the City of Halifax for the park lands protected to date. And, to Dr. David Patriquin, our sincere thanks for his biological overview of the area.

To date, this coalition is comprised of: SLCA (Sandy Lake Conservation Association), SRA (Sackville Rivers Association), Agropur Cooperative Dairy Bedford Plant, Beechville Lakeside Timberlea Rails to Trails, Canoe/Kayak Nova Scotia, Ecology Action Centre, Five Bridges Wilderness Heritage Trust, Friends of McNabs Island Society, Halifax North West Trails Association, Nova Scotia Bird Society, Nova Scotia Wild Flora Society, St. Margaret’s Bay Stewardship Association, The Halifax Field Naturalists, The Turtle Patrol, WRWEO / The Bluff Wilderness Hiking Trail, and more are being added.

Thanks to everyone for their support

To see more pictures and science go to Dr. David Patriquin’s website,
and hear David’s talk of Dec 6 2018 for the SRA:

HRM purchase of 160 acres from Armoyan
In 2015 Halifax acquired 160 acres of forested lands from the developer who had cleared the 200 acres. Below is the city’s conceptual map that accompanied the recommendation from city staff.


Excerpts from Our HRM Alliance blog 2015


The Sandy Lake Watershed Study can be found by clicking here.

A summary of our response to the watershed study can be found below.  The entire response with attachments can be found by clicking here.

Response of Sandy Lake Conservation Association (SLCA) to:

The Sandy Lake Conservation Association (SLCA) has serious concerns and questions about the Sandy Lake Watershed Study – Final Report (AECOM 2014) that we believe must be addressed before the document is accepted by HRM and before any form of development can be allowed in the Sandy Lake (Bedford) watershed.

In addition, we have related concerns about the general development process relevant to lakes. We would like to see improvements to the system piloted at Sandy Lake and other lakes to benefit all lakes in HRM. A new watershed policy and superior yet cost-effective practices can better avoid potential problems and can ensure healthy lakes in HRM for citizens to enjoy over the long term.

Re:  Sandy Lake Watershed Study – Final Report (AECOM 2014)

We lack confidence in the total phosphorus (TP) data set and in how it was used to draw the conclusions in the report.  The coefficient of variation[1] in the TP concentration is very high, indicating that the inherent variability in the data is 70% as large as the mean value of the TP concentration (Figure 8).  The data set is very small (17 samples) for the time period under consideration (about 10 years for Figure 8), with no consistency as to the time of year or the depth of sampling, as far as sampling strategy was concerned[2].  The results span all three trophic states (categories or levels of nutrient-richness), from eutrophic (far too rich), to mesotrophic, to oligotrophic (very nutrient poor).   Just over[3] one-quarter of the total phosphorus data collected since early in 2005 puts the lake in the eutrophic category (Figure 8). Such a data-set is hardly a sound scientific basis on which to base the broad conclusions that the lake “is” mesotrophic, nor is the data of sufficient quality or consistency to make reliable predictions.

The AECOM report omits quantitative statements of the level of uncertainty in their predictions, such as confidence intervals[4].   The early-warning TP value of 15 mg/L would be easily enveloped by the bounds of a common confidence interval (such as the 95% C.I.).  The report seems to be lacking with respect to quantifying such uncertainty, in both the backward and forward senses.  Given such uncertainty (both evident and unstated), to have a water quality objective for this lake that is the “upper limit of the mesotrophic range” (page 31) is not at all comforting to SLCA, especially given that:  (i) eutrophic urban lakes (the next trophic level) are not amenities but are liabilities, (ii) eutrophic lakes have a short life-span as lakes, and that

(iii) it is admitted in the WQM (water quality management) plan that Sandy Lake is “highly vulnerable” (page 42).

It is general knowledge that phosphorus and nitrates can worsen the trophic state of a water body.  However, the warming of bodies like Sandy Lake and Marsh Lake[5]:

  1. increases the rate at which nutrients such as TP are eventually used by algae, increasing their abundance,
  2. decreases O2 levels, altering the ecology of a water body, by affecting what flora and fauna are favoured and what species are even fundamentally viable[6],
  3. as a side-effect of the joint action of #1 and #2 above, the nutrient level a water body can be altered (worsened).  Page 14 of AECOM report admits this by saying that “Additionally, the increase in impervious surfaces, such as asphalt roads, and heat retention of these surfaces may increase water temperature, which can also adversely affect the lake’s aquatic health.” (bottom of paragraph 4).  In connection with possible changes to the water quality of Florence Lake on Vancouver Island (due to urbanization), the BC Dept of Environment has stated (by way of background information) that: “Challenges to water quality management on Florence Lake include phosphorus loading from non-point sources, shallow depths, warm temperatures and low oxygen levels, primarily during the summer months. Excess phosphorus can cause spring and summer algal blooms as well as the spread of aquatic vegetation. When the vegetation and blooms die off and settle to the bottom, this can lead to oxygen depletion in the lake which provides favourable temperatures and photic opportunities for algae growth throughout the water column. Furthermore, as O2 levels decrease near the bottom, internal nutrient loading occurs, whereby phosphorus is released from the sediment and enters the water column, exacerbating an already nutrient rich environment. With the lack of flushing of the lake in the fall and winter months, these nutrients are not removed and the process begins again.”

If the Terms of Reference prepared by HRM precluded consideration of temperature, they were fundamentally flawed.  If they did not, the modelling approach used by AECOM was flawed.

It is admitted in the report that the model used to develop the conclusions in this report is a steady-state model (pg 32).  That is, it inherently reaches some new equilibrium state with respect to its nutrient level or balance, as an outcome for a given set of imposed hypothetical conditions.  By contrast, the TP data (though very scattered) has a clearly upward trend, showing increasing TP levels over time, and this with no significant historic increase in the amount of actual urbanisation.  We are concerned that the Lake Capacity Model (LCM) results are accepted and believed even though they do not account for this temporal trend; they are used to suggest that TP will simply plateau in the mesotrophic range (we note again that the LCM does not consider temperature, nor associated micticity[7] changes, nor temperature-change-driven TP release from lake-bed sediments[8]).  Page 5 of the report states that the “retention time” of Sandy Lake is only about four months (paragraph 5 – White et al. 1984).  This means that the time scale of the replacement of the 6 million m3 in the lake is routinely encompassable by a single summer season, indicating a clear potential for higher summer lake temperatures, given that urban runoff has persistently higher summer temperatures.

The LCM, now 39 years old (Dillon & Rigler 1975. Appendix A), was developed for, and first applied to, various lakes/watersheds (and therefore soils and bedrock geologies) in southern Ontario.  It does not take into account microbiological contamination (Dillon & Rigler 1975), as is commonly caused by pets in urban areas (especially cats), nor does it account for phosphorus release from bed sediments, as can be caused by low oxygen in the hypolimnion (Dillon & Rigler 1975, page 1522, column 1)[9].  Its application to small temperature-sensitive lakes is questionable.  There is an abundance of more recent research that describes how urbanisation changes the quality of urban receiving waters, including temperature and ecological changes (Jones et al. 2012).

Firstly, the Sandy Lake Conservation Association is concerned that this well-known warming phenomenon was not considered.  Secondly, an important aspect of the LC model that must drastically affect results coming from it is the TP generation rates (“export coefficients”).  We are told that “large-lot residential” developments have export coefficients of 0.2 kg/ha per year, whereas “commercial” land uses have export coefficients of 0.6 kg/ha per year.  We are also told that good stormwater management practices would have the effect of reducing this phosphorus export rate by “50%” (page 40-41).  Clearly, such phosphorus ‘export’ rates (and hoped-for reductions in such rates) are educated guesses; changing them would completely change the conclusions of this report.  This is admitted by the progenitors of the LCM: “Uncertainty in the phosphorus export figures and in the loading from precipitation alone could result in a 100% error in the calculation of the natural phosphorus while factors such as the soil retention factor are still only approximations”.  We are concerned that no analysis of the amount of inherent uncertainty in the assumed export coefficients is presented in the AECOM report, nor are supporting references given for the values that were used (no authorities are cited beside the stated values of the coefficients).  Are these export coefficients well-supported by virtue of NS experience (post-development data)?

Page 1 mentions municipal services, and Figure 2 shows “water and sewer services”.  The frequently used word “sewer” in the report does not differentiate between the sanitary sewerage systems and the storm-sewer system (real or hypothetical), but it should have.  The bottom of page 1 apparently indicates that storm sewerage is not part of future development, in some cases.  Since TP does indeed come from stormwater, the SLCA would like to see where all future storm sewers will probably be located, especially the outfalls from same, and whether or not any stormwater will be directed into the lake (and/or its tributaries), and if so, how it will end up in the lake.  The sanitary sewerage system should have been portrayed in a figure, noting in addition whether a given area will instead remain on septic systems, under a given scenario.

The future area to be serviced by storm sewerage system(s) should have been portrayed in a separate figure, noting the most probable locations of any outfalls and stormwater retention facilities.

The report appears to advocate development Scenario 2 (page 45, chapter on satisfying HRM’s E-17 policy), but it is hard to find an explicit recommendation to this effect.

The amount of hydrologic detail in the report is also disappointing.  No pre-development and post-development hydrographs or other graphics are presented.  To get some sense of volumes involved, one should compare the volume associated with the expected amount of urban development to the lake volume.  If the volume of 6 million m3 (page 5) of Sandy Lake is spread over the expected newly-developed area of 361 hectares, a depth of 1662 mm results.  This means that an annual runoff figure of 850 mm (for example[10]) represents about half of this depth.  This means that if the annual runoff from the 361 hectares becomes both greater and warmer, this volume of warm water will represent a relatively large percentage of the volume of Sandy Lake.  We would like to see a description and discussion of studies on lakes of comparable relative size.

HRM’s Regional Plan’s E-17 (Appendix B) requires that specific recommendations be made from studies such as this one.  Contrary to the fact that changes to the stormwater runoff behaviour is the very reason that studies such as this one are done, we find the following vague statement on page 42: “The meaning of the term Advanced Stormwater Management does not reflect any specific methods of stormwater management….” (second paragraph).

Also contrary to the need for specific recommendations plural, page 45 of the report merely mentions undifferentiated “best forestry practices” (other than a simple buffer zone recommendation).

This report does recommend (i) that the effluent from the two wastewater treatment (WWT) plants in the watershed be ‘sent’ elsewhere.  In connection with the WWT plant overflows (due to an ‘overflowing’ sanitary sewerage system, or ‘SSO’), page 47 of the report states “Overflows typically occur during extreme weather events.  The timing, frequency, and severity of these events are not possible to predict and so the water quality impacts from overflows cannot be quantified or modelled.”  This statement is true if one is limited to the LCM model, but completely false in general.  Halifax Water and HRM have paid for extensive studies to quantitatively address just such SSO problems, and these studies are on their shelves.  (These have been done because the CCME has asked that municipalities put an end to all SSO’s, as per the statement at the bottom of page 51).

Related Questions and Concerns 

Note: The watershed study is required to address E-17 of the Regional Plan.

  1. It is acknowledged in the report that urban development is currently increasing phosphorus concentrations in Sandy and Marsh Lake.  As stated in item E-17, the purpose of the watershed study is to determine the carrying capacity of the watershed and determine the amount of development.  All three development scenarios are full development scenarios for the areas targeted for development.  Given the current negative water quality trend and the low-flush rate of the lake, a development scenario that takes a precautionary approach and is not full-build out would be advisable.  Why was this type of scenario not considered? 
  1. All the scenarios contain a constraint of 20 metres around watercourses, wetlands, and waterbodies.  Given the objective in item E-17-i states to “identify and recommend measures to protect and manage natural corridors and critical habitats for terrestrial and aquatic species, including species at risk”, why was research conducted by Rideout (2012) stating “a wider buffer of >50m is required to provide terrestrial habitat services” not taken into consideration?  Our Sandy Lake advisors recommend a 60m minimum, given the vulnerability of the lake, and that more would be preferable.
  1. Also, item E-17-j states to “identify appropriate riparian buffers for the watershed”.  Given the intensity of the proposed development and the rising levels of nutrients, again, why is only the minimum distance of riparian buffers (i.e. 20m) recommended? 
  1. It is acknowledged in the report that there was no comprehensive study of wildlife undertaken in the Sandy Lake area.  Within the Birch Cove Lakes watershed study, sensitive areas were listed as development constraints.  In the Sandy Lake report, merely stating that an analysis for Sandy Lake was not completed therefore there are no constraints does not satisfy the requirement of E-17-i. Why was there not an ecological study and/or GIS analysis conducted to identify sensitive areas to satisfy the E-17-i requirement?
  1. Within the Birch Cove Lakes watershed study old growth forest was considered a constraint.  The Sandy Lake report mentions a mature hemlock forest on the southern peninsula of Sandy Lake.  Mature hemlock represents a late-successional stage forest which is indicative of old-growth forest.  Data was collected on October 3, 2014 by a Department of Natural Resources (DNR) employee to quantify the mature hemlock (See Edward Glover’s submission on old-growth forest).  Bruce Stewart, manager of research and planning at DNR, states that this forest stand ranks high as old growth.  Item E-17-k states “identify areas that are suitable and not suitable for development”. Omission of old growth forests from the report implies that old-growth forest is suitable for development. Why was this old growth forest, or any other for that matter, not considered a constraint for the Sandy Lake watershed study?
  1. We are resubmitting our March 22, 2014 (Appendix C) letter because the final report did not include a table of concordance documenting how those issues from our letter were addressed.

“How Lakes Work” as applied to Sandy Lake:

“No Swim” advisories are often associated with high water temperatures, because bacteria multiply much more quickly when it is warm (the same reason why we refrigerate our food).  Protozoans eat bacteria and bigger ‘microscopic’ life-forms eat protozoans, and on up the food chain. The types of benthic invertebrates present (spineless bottom dwellers that live in sediment) are important indicators of water quality; persistently warmer water will alter the type and diversity of the limnic fauna (lake creatures) broadly speaking.  High water temperatures inherently limit the saturation level (upper limit) of Oxygen (O2) in the water, altering what kinds of fish will be happy in a given lake or stream.  All salmonidae (this family includes trout) like cold high-O2 water, whereas carp and suckers and perch are much more tolerant of poor O2 levels (but are considered less desirable as fish).  Salmonidae want gormet benthic invertebrates like dragonfly nymphs, but carp will eat garbage.

Warmth also tends to change the flora (botanic ecology); some aquatic weeds do well in warmer water, so when water warms one can get post-development ‘blooms’ of plants that you previously did not see much of, or any of, before.  These weeds increase the rate at which a lake traps sediment, matter that would normally just pass through the lake.  This trapping of sediment and the way that lakes become marshes and then bogs and then land is called ‘natural succession’.

There are more factors. At many Canadian beaches (such as Mooney’s Bay on the Ottawa River) there are regular closures right after it rains, in the summer.  This is because cat faeces have accumulated in the watershed and get washed into the river.

Dark south-facing surfaces should be avoided in new developments. One can intelligently use trees and orient the streets appropriately to minimize the warming of runoff.  One can orient roofs so that most of their surfaces are not south-facing surfaces (even though this increases people’s heating bills).  Rain barrels should be on all properties. A golf course should be limited as to what it can apply (like farmers, golf courses tend to waste fertilizer by putting on too much fertilizer at a time).

If the two wastewater treatment plants within the Sandy Lake watershed cannot do their job from time to time due to “I and I” (inflow & infiltration = surface water and groundwater leaking into the sanitary sewerage system) occurring every time it rains, methods exist for relining the pipes in the existing system (trenchless technologies).

New sanitary sewerage systems should be tested every 5 years and leaks fixed.

Another factor is Sandy Lake’s dimicity (It turns over twice a year), a function that can also be altered by watershed urbanisation.

We understand that the annual precipitation in the Sackville area is about 1200 mm per year (this number varies from year to year, of course).  This published annual precipitation value includes the water equivalent of the annual snowfall – itself a highly variable number.  If one has a watershed area which ‘suddenly’ has 30% more impermeable surfaces, one’s surface runoff proportion from that area goes up by 360 mm (and the groundwater system receives that much less of the annual precipitation).  As an example, if the amount of newly developed area is 1 km2, that represents an additional volume of water of 360,000 cubic meters (water likely with cat faeces etc. in it).  Whether or not a given lake is going to be strongly affected or not depends on ITS own volume.  A small-volume lake could be ‘killed’ by such a change.

Overall, we would have thought we would see some clearer work on the relative volumes involved (by AECOM); i.e. basic hydrologic budgets as compared to Sandy Lake’s own typical volume (Note: Bachiu’s “hydraulic” budgets, hydraulic is the wrong word).  There are many useful studies out there on this kind of thing.  To just study total phosphorus and use it as one’s sole criteria is too narrow.  HRM would be wise to catch up to the times on data collection.  Use of equipment now available for continuous monitoring of surrogate parameters is quite cost-effective and very informative, compared to having a guy fill a bottle from the lake.  AECOM had very little data to work with.  One does not get a picture of what is going on from a couple-of-dozen grab samples. The scatter would have been due to when in the year the sample was taken and how long since it had rained.  Drawing conclusions of this importance, that is, when development of this magnitude is being considered near a lake, from so little data is very questionable. 


SLCA recommends putting a halt to all further development, subject to (i) implementation of the data collection program recommended by AECOM in Section 9 of this report plus an associated follow-up modelling effort of a more complete type, and (ii) the full and formal assessment of the state of health and abundance of the four species-at-risk, already identified as being at risk on page 50 of the report itself (salmon and turtles, asters and stitchworts).

If development is to eventually go ahead, HRM and Halifax Water should:

  1. switch households who are on septic systems (especially those that fail a timely inspection[11]) to a new sanitary sewerage collection system  before allowing further development,
  2. move both sources of WWT plant effluent before allowing further development (see on page 47).

The above would lessen two major existing nutrient sources before the addition of any new nutrient sources,

  1. increase the minimum buffer size to 60 m (given the stated vulnerability of the lake),
  2. pass a by-law requiring use of rain barrels on every residential lot in the Sandy Lake watershed,
  3. require the implementation of state-of-the-art stormwater management measures for any proposed sub-division developments, such as the use of permeable pavements (Ferguson 1994), and underground detention systems (Poornima and Davis 2010),
  4. expect the use of tree canopies (Jones et al. 2012) and the adjust orientation of developments at the sub-division-layout stage so as to lessen the warming of runoff (adjustment of azimuths of roofs and roads),
  5. disallow uncontrolled tree removal,
  6. ban the use of road salt in the watershed,
  7. disallow the bulldozing of drumlins, so as to preserve groundwater recharge sites (see last paragraph on page 9),
  8. limit the use of lawn fertilizers (amount applied, time of year),
  9. ban herbicides and limit the use fertilizer by the golf course (alluded to on page 47),
  10. specify a minimum lot size for all new lots[12], to a size that will clearly lessen adverse hydrologic changes.

The above might be ensured by passing by-laws before any further watershed change, thus communicating to potential developers what they are ‘getting themselves into’, before they begin construction. 

In Closing 

We trust that readers will see that we deeply care about the welfare of this lake that has been in existence for a very long time and that is being put at risk by human activity. Thorough evaluation along with careful application of current science and knowledge can retain its health as a continuing natural habitat as well as provide an enduring beautiful resource for recreation and enjoyment for citizens.

There is a need for better monitoring, better data, better analysis, better modelling, and better literature reviews. There is modern equipment for monitoring multiple parameters continuously (rainfall, lake depth, specific conductivity, temperature,…) and it is far more clever and affordable than it used to be.

As was noted in the second watershed meeting (Appendix D), the absence of policies that might be applied to HRM watersheds is part of the problem. This absence of policy is a political problem that HRM councillors, now aware of it, can rectify.  

Sandy Lake is already at significant risk from the uncontrolled clear cut that occurred in 2013. Putting into place policies and controls to prevent such events in other areas of HRM would logically be a part of watershed protective policies. We ask that such protective policies for trees and wooded lands be created and implemented across HRM.

Regarding the protection of trees and lakes: 

  1. Florence Lake (1980‐2009) Water Quality Monitoring Program (Appendix E)
  1. Ottawa Tree By-law:

  1. Saskatchewan Lakeshore Development:

We respectfully request that HRM decision makers follow our lead to protect Sandy Lake and will develop policies that will benefit and protect lakes throughout HRM from this time on. We believe that our document provides much information that can be used to develop these improvements to policy and practice.

We in the SLCA would like to be part of the solutions and we offer our ongoing efforts and input to this end.

In the meantime, we request that this watershed report not be accepted by HRM, and that no development be allowed in the Sandy Lake watershed until our questions and concerns outlined in the bolded parts of this document are addressed satisfactorily, and until up to date lake protection policies and practices are put into place. 

We also request a meeting with appropriate HRM staff and our local councillors to chart the way forward.

[1]  standard deviation divided by the mean.

[2]  it is significant that a detailed sampling program, one which includes temperature, is recommended by AECOM (page 43).

[3]  if the threshold data point of 20 mg/L is counted, 5/17 or 29.4 %  of the data indicates eutrophic conditions.

[4]  we note the vague admission of the presence of “inherent uncertainty” in the LCM model (page 42).

[5]  Marsh Lake is surrounded by a wetland that is quite large compared to its own surface area.

[6]  e.g. catfish and suckers are quite happy in warm eutrophic waters.  Page 22 of the AECOM report admits the possibility of oxygen deprivation in the case of Sandy Lake, and that it would promote TP release from sediments in the bed of the lake.

[7]  i.e. mixing regime, most Canadian lakes being dimictic – ‘turning over’ twice a year.  The AECOM report contains recognition of the fact that this actually occurs in Sandy Lake (top of page 18) but takes the matter no further.  The twice-a-year turnover prevents stagnation of the deepest water layers of a lake, and is temperature-driven.

[8] a significant fraction of sediment will probably accumulate in a lake, not simply flush through.  AECOM assumed a phosphorus sequestration rate by sediment in Sandy Lake of 33% based on an oxygenated hypolimnion.  Oxygen content decreases exponentially with increasing temperature, and increased lake temperatures are a normal expectation.  Sediment accumulation, over time, together with a warmer lake (lower O2) could have a significant effect on the actual TP sequestration/desequestration rates, but no modelling was done in this regard.

[9]  More capable models exist, such as the EQuIS LakeWatch Limnology Decision Support System, and the GLM-FABM ( model.

[10]  approximately the value found from the runoff map for NS, in the Hydrologic Atlas of Canada, AECOM estimates 755 mm.  The mean annual precipitation is about 1350 mm, with higher variability in recent years.

[11]  as per item 9 page 52.  We also note the statement on pg 32 of the report that: “Unfortunately, mitigation (sic) measures to reduce total phosphorus concentrations are seldom instantaneous or completely effective so …early warning values are often used to manage lake quality, rather than waiting for the … water quality objective to be met.”

[12]  one that is relatively large.  We note the following statement on page 40 “In Scenario 2 the contribution from small lot residential increases by a factor of three and is the dominant source of phosphorus, at 25% of the total load, in this scenario.”

Note: Assistance in the preparation of this report was provided by David Hansen, Ph.D., P.Eng.


AECOM (T. Bachiu) 2014. Sandy Lake Watershed Study – Final Report. Project report 60303077, AECOM Canada Ltd, Halifax NS, 64 pp plus appendices.

Dillon P.J. and Rigler F.H. 1975. A simple method for predicting the capacity of lake for development based on lake trophic status. Journal of the Fisheries Research Board of Canada, 32(9):1519-1531.

E, Rideout (2012), Setbacks and Vegetated Buffers in Nova Scotia,

Ferguson B.K. 1994. Stormwater Infiltration. Lewis Publishers, Boca Raton, 269 pp.

Jones M.P., Hunt W.F., and Winston R.J. 2012. Effect of urban catchment composition on runoff temperature. 138(12):1231-1236.

Poornima N. and Davis A.P. 2010. Thermal reduction by underground storm-water retention system. ASCE J. of Environmental Eng., 136(5):520-526.

List of Appendices

Appendix A: Dillon P.J. and Rigler F.H. 1975. A simple method for predicting the capacity of lake for development based on lake trophic status. Journal of the Fisheries Research Board of Canada, 32(9):1519-1531.

Appendix B: E-17 From The Regional Plan

Appendix C: Sandy Lake Conservation Association response to the February preliminary report

Appendix D: Sackville River’s Association, 2014 Sep Big Sandy Lake Watershed Water Quality Study

Appendix E: Florence Lake (1980‐2009) Water Quality Monitoring Program

Appendix F: Additional Resources


Response of Sandy Lake Conservation Association (SLCA) to:

Old Growth Forest Constraint Mapping

A mandate of the Sandy Lake watershed study is to address policy E-17.  Item E-17-k states “identify areas that are suitable and not suitable for development”. 

Upon reviewing the final copy of the study, it was alarming to learn that small lot residential development was recommended on the southern peninsula of Sandy Lake; the same southern peninsula that is stated in the study as having a mature hemlock forest.

Given that the Department of Natural Resources (DNR) acknowledges that old growth forest in Nova Scotia is rare, and is actively attempting to protect it, recommending this area as suitable for development is extremely misguided.

To provide validity on said point, arrangements were made to have a DNR employee collect data using a sampling protocol designed specifically to quantify old forest in Nova Scotia. Three sample plots were collected on October 3, 2014.

The data was reviewed by the DNR manager of research and planning.  He stated these are two high quality old growth stands from the “SH2 Hemlock-White pine/Sarsaparilla” vegetation type. Hemlock is the longest lived species in the province, and the longevity of hemlock and pine in this community supports development of old growth forests that can persist for long periods through gap replacement processes that maintain unevenaged  conditions. The old forest score of 87 out of a possible 100, and age >175 years would make these one of the higher scoring old growth stands in the Province. If it occurred on Crown Land it would fall under DNR’s old forest policy, and would likely be reserved.) who indicated a score of 87 rated high as old growth forest.

HRM should not accept the final draft as submitted by AECOM without accurately addressing item E-17-k in the context of old growth forest.  Old growth forest should not be suitable for development.  I recommend mapstand H4470637  387 and H4470636  182 be deemed a Type 1 constraint similar to AECOM’s old growth constraint designation for the Birch Cove Lake watershed study. A more thorough review of other forested land in the Sandy Lake watershed using a geographical information system and DNR’s Old Forest Policy 2012 to identify additional old growth forest area is required.